
November 2017 FoxRockX Page 15

Splitting a Procedure File
It’s easier to maintain separate program files rather than one monolithic proce-
dure file. This utility makes it easy.

Tamar E. Granor, Ph.D.

Procedure	files	have	been	part	of	FoxPro	since	the	
early days. They allow you to bundle a whole group
of	procedures	and	functions	into	a	single	file.	In	the	
years	before	the	Project	Manager,	a	procedure	file	
could make life easier. But since FoxPro 2.0, there’s
been	no	reason	to	use	procedure	files.	In	this	article,	
I’ll	show	a	utility	for	deconstructing	procedure	files	
into separate PRGs.
I	hate	procedure	files.	I	always	have.	They	always	
seemed to me to make things harder rather than
easier. When I can, I’ve always chosen to store each
procedure	or	function	in	a	separate	PRG	file	named	
with the routine’s name.

But most of my work is with existing applica-
tions.	Often,	 they	 arrive	with	procedure	files	 and	
usually, I simply leave them alone. But a few years
ago, I started working on a project that included a
procedure	 file	 that	 was	 over	 3MB	 and	 contained	
more than 134,000 lines of code and over 1,600 rou-
tines. Code References choked on it and it confused
Document View as to where its various routines
began and ended. Aside from all that, there was
evidence that many of the routines weren’t needed
in the project, so it was just cluttering things up.

Breaking	up	a	procedure	file	of	that	size	manu-
ally seemed like an overwhelming task, so I turned
to	VFP’s	ability	to	manipulate	files	and	text.	

The arguments against procedure
files
Before we look at the code, let me talk a little about
why	I	hate	procedure	files	so	much.	The	reasons	are	
a mix of technical issues and convenience.

The	first	reason	is	convenience.	With	procedure	
files,	I	have	to	look	two	places	to	find	a	given	rou-
tine.	First	I	look	for	a	PRG	with	the	specified	name.	
If	I	don’t	find	it,	then	I	have	to	open	the	procedure	
file	and	 look	 for	 it	 there.	 If	 there’s	more	 than	one	
procedure	file	(and	almost	every	project	I’ve	inher-
ited	that	uses	procedure	files	has	more	than	one),	I	
may	have	to	look	at	several	before	finding	the	rou-
tine of interest.

This issue got a little better with the Document
View window, since I can quickly see whether a
given	routine	is	in	a	specified	procedure	file.	(How-
ever,	for	that	3MB	procedure	file,	it	takes	10-15	sec-
onds to open Document View or to refresh it when
the	file	gets	focus.)

However, now that I’ve integrated Thor’s Go
To	Definition	tool	into	my	workflow,	the	problem	
is actually worse. I highlight the name of the rou-
tine I’m looking for and hit my hotkey. If the rou-
tine	is	a	PRG,	it	opens;	if	it’s	in	a	procedure	file,	it	
doesn’t. (To be fair, I just tested and found that if
I	 SET	PROCEDURE	 in	 the	 IDE,	Go	To	Definition	
does	find	the	routine.)

The second issue is dead weight. My experience
is	that	procedure	files	only	ever	get	bigger;	routines	
that are no longer in use never get removed. So
looking for what you need takes longer and longer.
In	addition,	the	whole	procedure	file	goes	into	your	
EXE, whether every routine is used or not, likely
making the EXE larger than it needs to be.

There’s	 another	problem	with	procedure	files	
getting bigger all the time. You may end up with
two or more versions of the same routine in the
file.	When	that	happens,	VFP	uses	the	last	version	
it	finds.	This	month’s	downloads	include	a	simple	
demonstration. TestProcFile.PRG contains two ver-
sions of a routine called Repeated. Each version
sends a different message to the Debug Output win-
dow. DemoDupRoutines.PRG contains the code
in Listing 1. When you run the code, the message
from the second version of the routine appears.

Listing 1. When a procedure file contains multiple routines with
the same name, VFP uses the last one it finds.
SET PROCEDURE TO TestProcFile
DEBUG
?Repeated()

The problem with this, of course, is that in
editing,	 you’re	 likely	 to	 find	 and	 change	 the	 first	
instance of a given routine.

The	 final	 issue	 I	 have	with	 procedure	 files	 is	
that it can sometimes be hard to get changes to
“take” in testing. I do most of my testing from the

Page 16 FoxRockX November 2017

Command Window without building executables,
but occasionally, I need to build and test with an
EXE.	When	procedure	files	are	involved,	once	I’ve	
run the EXE from the Command Window in that
VFP session, if I then run the main program from
the Command Window, changes to the procedure
file	are	not	reflected	in	the	running	code.	The	only	
solutions I’ve found are to delete the EXE or to
close and restart VFP. On one project, I wasted a lot
of	time	until	I	figured	that	out.

To demonstrate this problem, build the proj-
ect DemoProcFile that’s included into this month’s
downloads into an EXE. Then DO DemoProcFile.
EXE from the Command Window. Next, open the
procedure	file	and	change	the	output	in	the	second	
version of Repeated. Then, DO DemoDupRoutines
from the Command Window. You’ll see that your
changed version does not run. Even issuing SET
PROCEDURE TO (whether in the project code or
from the Command Window) doesn’t help.

For all these reasons and given that, in my view,
procedure	files	give	you	no	benefits,	I	avoid	them.

Doing a split
It turned out to be pretty easy to write code to split
a	procedure	file	 into	 separate	PRG	files.	Listing 2
shows my initial code. The user is prompted to
point	 to	 the	procedure	file.	 If	 a	file	 is	 chosen,	 the	
AProcInfo()	 function	 is	 called;	 that	 function	 fills	
an	array	with	a	list	of	the	“things”	in	the	specified	
file.	As	called	here,	the	array	includes	procedures,	
classes, methods and compiler directives.

The	next	step	is	to	read	the	procedure	file	and	
break it into lines. The code then loops through the
list	 of	 things	 and	processes	 each	one	 classified	as	
“Procedure” (which, in fact, includes procedures,
functions,	 methods	 and	 events).	 The	 first	 step	
in processing a routine is checking whether we
already	have	a	PRG	with	the	specified	name	(which	
can happen either because it appears twice in the
procedure	 file	 or	 because	 there’s	 already	 a	 PRG	
with that name). If there isn’t or the user says to
overwrite	it,	we	figure	out	which	lines	in	the	proce-
dure	file	contain	the	routine	(using	the	AProcInfo()	
results), and then build a string containing only
those	lines	and	save	it	as	a	file.

Listing 2. It doesn’t take much code to split a procedure file
into separate PRGs.
LOCAL cProcFile, aProcs[1], nProcs, nProc
LOCAL cProcName, cPath, cContent, nStartProc
LOCAL nEndProc, aProcLines[1], nTotalLines
LOCAL cProcText, nLine, cFileName, lProceed
LOCAL cMessage

cProcFile = GETFILE("prg","File name", ;
 "Split", 0, ;
 "Select procedure file to split")
IF NOT EMPTY(m.cProcFile) AND ;
 FILE(m.cProcFile)
 cPath = JUSTPATH(m.cProcFile)

 nProcs = APROCINFO(aProcs, m.cProcFile)

 * Read the whole file and split it in lines
 cContent = FILETOSTR(m.cProcFile)
 nTotalLines = ALINES(aProcLines, ;
 m.cContent)

 FOR nProc = 1 TO m.nProcs
 IF aProcs[m.nProc, 3] = "Procedure"
 cProcName = aProcs[m.nProc, 1]
 cFileName = FORCEPATH(FORCEEXT(;
 m.cProcName, "prg"), m.cPath)
 * Prompt if we have an existing file
 IF FILE(m.cFileName)
 cMessage = m.cFileName + ;
 "already exists. Overwrite it?"
 IF MESSAGEBOX(m.cMessage, 4 + 32,;
 "Overwrite existing program?") = 6
 lProceed = .T.
 ELSE
 lProceed = .F.
 ENDIF
 ELSE
 lProceed = .T.
 ENDIF

 IF m.lProceed
 nStartProc = aProcs[m.nProc, 2]
 IF m.nProc < m.nProcs
 nEndProc = aProcs[m.nProc+1, 2] - 1
 ELSE
 nEndProc = m.nTotalLines
 ENDIF

 * Now grab the relevant lines
 cProcText = ''
 FOR nLine = m.nStartProc TO m.nEndProc
 cProcText = m.cProcText + ;
 aProcLines[m.nLine] + ;
 CHR(13) + CHR(10)
 ENDFOR

 * Save
 STRTOFILE(m.cProcText, m.cFileName, 0)
 ENDIF
 ENDIF
 ENDFOR

ENDIF

RETURN

You can probably think of lots of bells and
whistles to add here. A few that came to mind as
I wrote the description are displaying the existing
routine when there’s a duplicate, keeping a list of
the routines skipped because of duplication, and
keeping a list of routines created. None of those
would be hard to add.

In addition, this code doesn’t properly handle
classes	defined	in	a	procedure	file.	(That	was	a	con-
scious design decision, since I rarely inherit proce-
dure	files	that	include	class	definitions.)

More importantly, it ignores compiler direc-
tives.	 If	 the	 procedure	 file	 uses	 #INCLUDE	 or	
#DEFINE	to	make	constants	available,	there	will	be	
problems with the new PRGs.

But for all these weaknesses, the code works
pretty well, and it’s very quick.

November 2017 FoxRockX Page 17

However,	 for	 the	 procedure	 file	 for	 which	 I	
wrote	 it,	 it	 failed	 in	 two	ways.	The	first	 turns	out	
to be a bug in AProcInfo(), which mirrors the bug
that	file	demonstrates	in	Document	View.	When	I	
run	AProcInfo()	on	that	file,	 the	starting	positions	
it shows for some routines are wrong. Both Docu-
ment View and AProcInfo() get off by a line (that
is,	show	the	second	line	of	 the	routine	as	 the	first	
line) nearly 10,000 lines into this monster, get off by
another line after more than 35,000 lines total. By
the	time	they	both	entirely	gave	up	on	this	file	after	
more	than	87,000	lines,	they’re	missing	the	first	line	
of the routine by four lines. There are quite a few
more routines after that, but neither the function
nor the tool sees them. (This turned out not to be a
bug	 in	VFP.	The	file	contained	CHR(0);	 removing	
it allowed this code, as well as Document View, to
see	the	whole	file	and	eliminate	the	crash	in	Code	
References.)

When	I	first	wrote	the	tool,	I	spent	some	time	
trying	to	figure	out	whether	it	was	something	other	
than	the	size	of	the	file	causing	the	problem,	as	well	
as trying to code around the problem. While I was
trying to solve the problem of picking up the wrong
lines, Jim Nelson suggested I also convert it into a
Thor tool.

Splitting via Thor
I wrote about creating your own Thor tools in
the March, 2013 issue, so I won’t go back over
what’s necessary for that here. The complete code,
including the part that tells Thor about the tool, is
included in this month’s downloads as Thor_Tool_
Split.PRG. I’ll describe how to add it to Thor later
in this article.

The key portion of any Thor tool code is a pro-
cedure called ToolCode; that’s what runs when the
user chooses the tool. Much of the ToolCode proce-
dure for this tool is the same as the code in Listing
2. However, it includes several improvements.

First, it handles compiler directives at the top
of	the	procedure	file	correctly,	adding	them	to	the	
start of each new PRG. That’s handled by the new
DO WHILE loop that precedes the main FOR loop.

Second,	 it	 includes	 a	 fix	 for	 the	 AProcInfo()	
bug related to line numbers. The new FindDefLine
function, discussed later in this article, handles this
bug.

Third,	because	most	of	the	procedure	files	I’ve	
worked with have comment blocks describing the
routine before the PROCEDURE or FUNCTION
line, it captures those lines and moves them to the
new PRG as well. That’s addressed by the two new
DO WHILE loops inside the main FOR loop. The
first	 goes	 backward	 from	 the	 line	 containing	 the	
PROCEDURE or FUNCTION, looking for empty

lines and comment lines (those beginning with an
asterisk—if you use one of the other comment nota-
tions, you’ll need to modify the code). The default
end position for the routine is the line immediately
before	 the	 beginning	 of	 the	 next	 item	 in	 the	 file.	
The second DO WHILE loop works backward from
that line, so that any trailing comments are omitted
from this routine, as they’re assumed to belong to
the next item.

Listing 3 shows the ToolCode procedure.

Listing 3. The ToolCode procedure of the Thor version of the
tool is similar to the original code.
LOCAL cProcFile, aProcs[1], nProcs, nProc
LOCAL cProcName, cPath, cContent
LOCAL nStartProc, nEndProc
LOCAL aProcLines[1], nTotalLines
LOCAL cProcText, nLine, cFileName, lProceed
LOCAL cMessage
LOCAL cDirectives
Local cLine, cWord2, nAdjust

cProcFile = GETFILE("prg","File name", ;
 "Split", 0, ;
 "Select procedure file to split")
IF NOT EMPTY(m.cProcFile) AND ;
 FILE(m.cProcFile)
 cPath = JUSTPATH(m.cProcFile)

 nProcs = APROCINFO(aProcs, m.cProcFile)

 * Read the whole file and split it in lines
 cContent = FILETOSTR(m.cProcFile)
 nTotalLines = ALINES(aProcLines, m.cContent)

 * Collect all compiler directives at top of
 * file for insertion into all new files
 cDirectives = ''
 nProc = 1
 DO WHILE nProc <= m.nProcs AND ;
 aProcs[m.nProc,3] = "Directive"
 cDirectives = ;
 aProcLines[aProcs[m.nProc,2]] + ;
 CHR(13) + CHR(10)
 nProc = m.nProc + 1
 ENDDO

 FOR nProc = 1 TO m.nProcs
 * Look only at procs and functions.
 * Don't include methods
 IF aProcs[m.nProc, 3] = "Procedure" AND ;
 NOT ("." $ aProcs[m.nProc, 1])
 cProcName = aProcs[m.nProc, 1]
 cFileName = FORCEPATH(FORCEEXT(;
 m.cProcName, "prg"), m.cPath)
 * Prompt if we have an existing file
 IF FILE(m.cFileName)
 cMessage = m.cFileName + ;
 " already exists. Overwrite it?"
 IF MESSAGEBOX(m.cMessage, 4 + 32, ;
 "Overwrite existing program?") = 6
 lProceed = .T.
 ELSE
 lProceed = .F.
 ENDIF
 ELSE
 lProceed = .T.
 ENDIF

Page 18 FoxRockX November 2017

 IF m.lProceed
 nStartProc = aProcs[m.nProc, 2]

 * Make sure we have the actual PROC or
 * FUNC line. There's a bug in
 * AProcInfo() that sometimes specifies
 * the first line as too low down.
 nStartProc = FindDefLine(;
 m.cProcName, m.nStartProc, ;
 aProcs[m.nProc,3], @aProcLines)

 * Search backward for comment lines
 DO WHILE nStartProc > 1 AND ;
 (EMPTY(aProcLines[m.nStartProc-1]) ;
 OR LEFT(aProcLines[m.nStartProc-1],;
 1) = "*")
 nStartProc = m.nStartProc - 1
 ENDDO

 IF m.nProc < m.nProcs
 * Find actual start of next proc
 nEndProc = FindDefLine(;
 aProcs[m.nProc + 1, 1], ;
 aProcs[m.nProc+1, 2], ;
 aProcs[m.nProc+1, 3], ;
 @aProcLines) - 1

 ELSE
 nEndProc = m.nTotalLines
 ENDIF

 * Search backward to ignore trailing
 * comment lines
 DO WHILE nEndProc > m.nStartProc AND ;
 (EMPTY(aProcLines[m.nEndProc]) OR ;
 LEFT(aProcLines[m.nEndProc],1) = ;
 "*")
 nEndProc = m.nEndProc -1
 ENDDO

 * Now grab the relevant lines
 cProcText = m.cDirectives
 FOR nLine = m.nStartProc TO m.nEndProc
 cProcText = m.cProcText + ;
 aProcLines[m.nLine] + ;
 CHR(13) + CHR(10)
 ENDFOR

 * Save
 STRTOFILE(m.cProcText, m.cFileName, 0)
 ENDIF
 ENDIF
 ENDFOR

ENDIF

RETURN

FindDefLine	returns	the	line	number	in	the	file	
on	which	the	specified	information	(whether	it’s	a	
routine,	a	class	definition,	or	some	kind	of	compiler	
directive) actually begins, correcting for the bug in
AProcInfo(). The function receives the name of the
item, the line it’s supposed to start on, the type of
item, and the array containing all the lines in the
procedure	file.	It	builds	a	logical	condition	to	iden-
tify the correct line (or, more accurately, to iden-
tify lines that cannot be the correct line) and then
loops	 backwards	 from	 the	 specified	 line	 until	 it	

finds	a	line	that	qualifies	as	the	right	one.	The	code	
is shown in Listing 4.

Listing 4. This function corrects for the bug in AProcInfo() by
searching backward to find the real first line of the routine.
PROCEDURE FindDefLine(cProcName, ;
 nStartsOn, cType, aProcLines)
* Find the actual line on which the specified *
proc starts. It may be nStartsOn, but due to
* a bug in AProcInfo, might be an earlier
* line.

LOCAL cLine, cWord2, nAdjust
LOCAL cDefinitionCondition

DO CASE
CASE m.cType = 'Procedure'
 cDefinitionCondition = ;
 [NOT INLIST(LEFT(m.cLine,4),"PROC","FUNC");
 OR NOT (m.cWord2 == UPPER(m.cProcName))]

CASE m.cType = 'Class'
 cDefinitionCondition = ;
 [NOT ("DEFI"$GETWORDNUM(m.cLine,1) ;
 AND m.cWord2 == "CLASS")];
 + [OR NOT GETWORDNUM(m.cLine,3) == ;
 UPPER(ALLTRIM(STREXTRACT(m.cProcName,'', ;
 'AS')))]

CASE m.cType = 'Directive'
 cDefinitionCondition = ;
 [NOT (LEFT(m.cLine,1) = "#"] + ;
 [OR NOT INLIST(GETWORDNUM(m.cLine,1), ;
 "INCLUDE", "IF", "ELIF", "ELSE", "ENDIF", ;
 "IFDEF", "IFNDEF", "UNDEF"))]

CASE m.cType = 'Define'
 cDefinitionCondition = ;
 [NOT (LEFT(m.cLine,1) = "#" OR ;
 NOT (m.cWord2 == UPPER(m.cProcName))]
ENDCASE

nAdjust = 0
cLine = ;
 UPPER(ALLTRIM(aProcLines[m.nStartsOn]))
cWord2 = GETWORDNUM(m.cLine,2)
IF "(" $ m.cWord2
 cWord2 = STREXTRACT(m.cWord2, '', '(')
ENDIF
DO WHILE &cDefinitionCondition
 nAdjust = m.nAdjust + 1
 cLine = ;
 UPPER(aProcLines[m.nStartsOn - m.nAdjust])
 cWord2 = GETWORDNUM(m.cLine,2)
 IF "(" $ m.cWord2
 cWord2 = STREXTRACT(m.cWord2, '', '(')
 ENDIF
ENDDO

RETURN m.nStartsOn - m.nAdjust

Adding the tool to Thor
Adding this tool to Thor is easy, assuming you
have Thor installed. Make any changes you want
to the tool’s PRG (such as what submenu you want
it on or the prompt you’ll see). Then from the Thor
menu, choose More | Open Folder | My Tools.
Drop the PRG into that folder and restart VFP (or
just restart Thor) and tool will be available.

November 2017 FoxRockX Page 19

If	 you’re	 not	 using	Thor	 (why	not?),	 you	 can	
extract the code from the ToolCode routine into a
standalone PRG and use the tool directly. There are
no dependencies on theThor framework.

Improving the tool
In addition to the items I mentioned in “Doing a
split” earlier in this article, you might want to mod-
ify	 the	 tool	 to	operate	on	an	open	file	rather	 than	
having to point to it. (That would a good use of the
Thor framework.)

You might also want to modify the code so
that it only puts the directives you need into a
given	PRG.	If	you’re	dealing	only	with	#DEFINE,	
that’s pretty easy; just search the code in the rou-
tine	to	see	if	the	specified	constant	appears.	How-
ever,	for	include	files,	you’d	have	to	do	more	work;	
AProcInfo() can give you a hand there, as you can
ask it only for directives, so you could apply it to
the	 Include	file	and	then	search	the	code	for	each	
routine	 to	 see	 whether	 any	 of	 those	 definitions	
appear.

Let me know if you think of any other useful
extensions.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

