
November 2017	 FoxRockX� Page 15

Splitting a Procedure File
It’s easier to maintain separate program files rather than one monolithic proce-
dure file. This utility makes it easy.

Tamar E. Granor, Ph.D.

Procedure files have been part of FoxPro since the
early days. They allow you to bundle a whole group
of procedures and functions into a single file. In the
years before the Project Manager, a procedure file
could make life easier. But since FoxPro 2.0, there’s
been no reason to use procedure files. In this article,
I’ll show a utility for deconstructing procedure files
into separate PRGs.
I hate procedure files. I always have. They always
seemed to me to make things harder rather than
easier. When I can, I’ve always chosen to store each
procedure or function in a separate PRG file named
with the routine’s name.

But most of my work is with existing applica-
tions. Often, they arrive with procedure files and
usually, I simply leave them alone. But a few years
ago, I started working on a project that included a
procedure file that was over 3MB and contained
more than 134,000 lines of code and over 1,600 rou-
tines. Code References choked on it and it confused
Document View as to where its various routines
began and ended. Aside from all that, there was
evidence that many of the routines weren’t needed
in the project, so it was just cluttering things up.

Breaking up a procedure file of that size manu-
ally seemed like an overwhelming task, so I turned
to VFP’s ability to manipulate files and text.

The arguments against procedure
files
Before we look at the code, let me talk a little about
why I hate procedure files so much. The reasons are
a mix of technical issues and convenience.

The first reason is convenience. With procedure
files, I have to look two places to find a given rou-
tine. First I look for a PRG with the specified name.
If I don’t find it, then I have to open the procedure
file and look for it there. If there’s more than one
procedure file (and almost every project I’ve inher-
ited that uses procedure files has more than one), I
may have to look at several before finding the rou-
tine of interest.

This issue got a little better with the Document
View window, since I can quickly see whether a
given routine is in a specified procedure file. (How-
ever, for that 3MB procedure file, it takes 10-15 sec-
onds to open Document View or to refresh it when
the file gets focus.)

However, now that I’ve integrated Thor’s Go
To Definition tool into my workflow, the problem
is actually worse. I highlight the name of the rou-
tine I’m looking for and hit my hotkey. If the rou-
tine is a PRG, it opens; if it’s in a procedure file, it
doesn’t. (To be fair, I just tested and found that if
I SET PROCEDURE in the IDE, Go To Definition
does find the routine.)

The second issue is dead weight. My experience
is that procedure files only ever get bigger; routines
that are no longer in use never get removed. So
looking for what you need takes longer and longer.
In addition, the whole procedure file goes into your
EXE, whether every routine is used or not, likely
making the EXE larger than it needs to be.

There’s another problem with procedure files
getting bigger all the time. You may end up with
two or more versions of the same routine in the
file. When that happens, VFP uses the last version
it finds. This month’s downloads include a simple
demonstration. TestProcFile.PRG contains two ver-
sions of a routine called Repeated. Each version
sends a different message to the Debug Output win-
dow. DemoDupRoutines.PRG contains the code
in Listing 1. When you run the code, the message
from the second version of the routine appears.

Listing 1. When a procedure file contains multiple routines with
the same name, VFP uses the last one it finds.
SET PROCEDURE TO TestProcFile
DEBUG
?Repeated()

The problem with this, of course, is that in
editing, you’re likely to find and change the first
instance of a given routine.

The final issue I have with procedure files is
that it can sometimes be hard to get changes to
“take” in testing. I do most of my testing from the

Page 16	 FoxRockX� November 2017

Command Window without building executables,
but occasionally, I need to build and test with an
EXE. When procedure files are involved, once I’ve
run the EXE from the Command Window in that
VFP session, if I then run the main program from
the Command Window, changes to the procedure
file are not reflected in the running code. The only
solutions I’ve found are to delete the EXE or to
close and restart VFP. On one project, I wasted a lot
of time until I figured that out.

To demonstrate this problem, build the proj-
ect DemoProcFile that’s included into this month’s
downloads into an EXE. Then DO DemoProcFile.
EXE from the Command Window. Next, open the
procedure file and change the output in the second
version of Repeated. Then, DO DemoDupRoutines
from the Command Window. You’ll see that your
changed version does not run. Even issuing SET
PROCEDURE TO (whether in the project code or
from the Command Window) doesn’t help.

For all these reasons and given that, in my view,
procedure files give you no benefits, I avoid them.

Doing a split
It turned out to be pretty easy to write code to split
a procedure file into separate PRG files. Listing 2
shows my initial code. The user is prompted to
point to the procedure file. If a file is chosen, the
AProcInfo() function is called; that function fills
an array with a list of the “things” in the specified
file. As called here, the array includes procedures,
classes, methods and compiler directives.

The next step is to read the procedure file and
break it into lines. The code then loops through the
list of things and processes each one classified as
“Procedure” (which, in fact, includes procedures,
functions, methods and events). The first step
in processing a routine is checking whether we
already have a PRG with the specified name (which
can happen either because it appears twice in the
procedure file or because there’s already a PRG
with that name). If there isn’t or the user says to
overwrite it, we figure out which lines in the proce-
dure file contain the routine (using the AProcInfo()
results), and then build a string containing only
those lines and save it as a file.

Listing 2. It doesn’t take much code to split a procedure file
into separate PRGs.
LOCAL cProcFile, aProcs[1], nProcs, nProc
LOCAL cProcName, cPath, cContent, nStartProc
LOCAL nEndProc, aProcLines[1], nTotalLines
LOCAL cProcText, nLine, cFileName, lProceed
LOCAL cMessage

cProcFile = GETFILE("prg","File name", ;
 "Split", 0, ;
 "Select procedure file to split")
IF NOT EMPTY(m.cProcFile) AND ;
 FILE(m.cProcFile)
 cPath = JUSTPATH(m.cProcFile)

 nProcs = APROCINFO(aProcs, m.cProcFile)

 * Read the whole file and split it in lines
 cContent = FILETOSTR(m.cProcFile)
 nTotalLines = ALINES(aProcLines, ;
 m.cContent)

 FOR nProc = 1 TO m.nProcs
 IF aProcs[m.nProc, 3] = "Procedure"
 cProcName = aProcs[m.nProc, 1]
 cFileName = FORCEPATH(FORCEEXT(;
 m.cProcName, "prg"), m.cPath)
 * Prompt if we have an existing file
 IF FILE(m.cFileName)
 cMessage = m.cFileName + ;
 "already exists. Overwrite it?"
 IF MESSAGEBOX(m.cMessage, 4 + 32,;
 "Overwrite existing program?") = 6
 lProceed = .T.
 ELSE
 lProceed = .F.
 ENDIF
 ELSE
 lProceed = .T.
 ENDIF

 IF m.lProceed
 nStartProc = aProcs[m.nProc, 2]
 IF m.nProc < m.nProcs
 nEndProc = aProcs[m.nProc+1, 2] - 1
 ELSE
 nEndProc = m.nTotalLines
 ENDIF

 * Now grab the relevant lines
 cProcText = ''
 FOR nLine = m.nStartProc TO m.nEndProc
 cProcText = m.cProcText + ;
 aProcLines[m.nLine] + ;
 CHR(13) + CHR(10)
 ENDFOR

 * Save
 STRTOFILE(m.cProcText, m.cFileName, 0)
 ENDIF
 ENDIF
 ENDFOR

ENDIF

RETURN

You can probably think of lots of bells and
whistles to add here. A few that came to mind as
I wrote the description are displaying the existing
routine when there’s a duplicate, keeping a list of
the routines skipped because of duplication, and
keeping a list of routines created. None of those
would be hard to add.

In addition, this code doesn’t properly handle
classes defined in a procedure file. (That was a con-
scious design decision, since I rarely inherit proce-
dure files that include class definitions.)

More importantly, it ignores compiler direc-
tives. If the procedure file uses #INCLUDE or
#DEFINE to make constants available, there will be
problems with the new PRGs.

But for all these weaknesses, the code works
pretty well, and it’s very quick.

November 2017	 FoxRockX� Page 17

However, for the procedure file for which I
wrote it, it failed in two ways. The first turns out
to be a bug in AProcInfo(), which mirrors the bug
that file demonstrates in Document View. When I
run AProcInfo() on that file, the starting positions
it shows for some routines are wrong. Both Docu-
ment View and AProcInfo() get off by a line (that
is, show the second line of the routine as the first
line) nearly 10,000 lines into this monster, get off by
another line after more than 35,000 lines total. By
the time they both entirely gave up on this file after
more than 87,000 lines, they’re missing the first line
of the routine by four lines. There are quite a few
more routines after that, but neither the function
nor the tool sees them. (This turned out not to be a
bug in VFP. The file contained CHR(0); removing
it allowed this code, as well as Document View, to
see the whole file and eliminate the crash in Code
References.)

When I first wrote the tool, I spent some time
trying to figure out whether it was something other
than the size of the file causing the problem, as well
as trying to code around the problem. While I was
trying to solve the problem of picking up the wrong
lines, Jim Nelson suggested I also convert it into a
Thor tool.

Splitting via Thor
I wrote about creating your own Thor tools in
the March, 2013 issue, so I won’t go back over
what’s necessary for that here. The complete code,
including the part that tells Thor about the tool, is
included in this month’s downloads as Thor_Tool_
Split.PRG. I’ll describe how to add it to Thor later
in this article.

The key portion of any Thor tool code is a pro-
cedure called ToolCode; that’s what runs when the
user chooses the tool. Much of the ToolCode proce-
dure for this tool is the same as the code in Listing
2. However, it includes several improvements.

First, it handles compiler directives at the top
of the procedure file correctly, adding them to the
start of each new PRG. That’s handled by the new
DO WHILE loop that precedes the main FOR loop.

Second, it includes a fix for the AProcInfo()
bug related to line numbers. The new FindDefLine
function, discussed later in this article, handles this
bug.

Third, because most of the procedure files I’ve
worked with have comment blocks describing the
routine before the PROCEDURE or FUNCTION
line, it captures those lines and moves them to the
new PRG as well. That’s addressed by the two new
DO WHILE loops inside the main FOR loop. The
first goes backward from the line containing the
PROCEDURE or FUNCTION, looking for empty

lines and comment lines (those beginning with an
asterisk—if you use one of the other comment nota-
tions, you’ll need to modify the code). The default
end position for the routine is the line immediately
before the beginning of the next item in the file.
The second DO WHILE loop works backward from
that line, so that any trailing comments are omitted
from this routine, as they’re assumed to belong to
the next item.

Listing 3 shows the ToolCode procedure.

Listing 3. The ToolCode procedure of the Thor version of the
tool is similar to the original code.
LOCAL cProcFile, aProcs[1], nProcs, nProc
LOCAL cProcName, cPath, cContent
LOCAL nStartProc, nEndProc
LOCAL aProcLines[1], nTotalLines
LOCAL cProcText, nLine, cFileName, lProceed
LOCAL cMessage
LOCAL cDirectives
Local cLine, cWord2, nAdjust

cProcFile = GETFILE("prg","File name", ;
 "Split", 0, ;
 "Select procedure file to split")
IF NOT EMPTY(m.cProcFile) AND ;
 FILE(m.cProcFile)
 cPath = JUSTPATH(m.cProcFile)

 nProcs = APROCINFO(aProcs, m.cProcFile)

 * Read the whole file and split it in lines
 cContent = FILETOSTR(m.cProcFile)
 nTotalLines = ALINES(aProcLines, m.cContent)

 * Collect all compiler directives at top of
 * file for insertion into all new files
 cDirectives = ''
 nProc = 1
 DO WHILE nProc <= m.nProcs AND ;
 aProcs[m.nProc,3] = "Directive"
 cDirectives = ;
 aProcLines[aProcs[m.nProc,2]] + ;
 CHR(13) + CHR(10)
 nProc = m.nProc + 1
 ENDDO

 FOR nProc = 1 TO m.nProcs
 * Look only at procs and functions.
 * Don't include methods
 IF aProcs[m.nProc, 3] = "Procedure" AND ;
 NOT ("." $ aProcs[m.nProc, 1])
 cProcName = aProcs[m.nProc, 1]
 cFileName = FORCEPATH(FORCEEXT(;
 m.cProcName, "prg"), m.cPath)
 * Prompt if we have an existing file
 IF FILE(m.cFileName)
 cMessage = m.cFileName + ;
 " already exists. Overwrite it?"
 IF MESSAGEBOX(m.cMessage, 4 + 32, ;
 "Overwrite existing program?") = 6
 lProceed = .T.
 ELSE
 lProceed = .F.
 ENDIF
 ELSE
 lProceed = .T.
 ENDIF

Page 18	 FoxRockX� November 2017

 IF m.lProceed
 nStartProc = aProcs[m.nProc, 2]

 * Make sure we have the actual PROC or
 * FUNC line. There's a bug in
 * AProcInfo() that sometimes specifies
 * the first line as too low down.
 nStartProc = FindDefLine(;
 m.cProcName, m.nStartProc, ;
 aProcs[m.nProc,3], @aProcLines)

 * Search backward for comment lines
 DO WHILE nStartProc > 1 AND ;
 (EMPTY(aProcLines[m.nStartProc-1]) ;
 OR LEFT(aProcLines[m.nStartProc-1],;
 1) = "*")
 nStartProc = m.nStartProc - 1
 ENDDO

 IF m.nProc < m.nProcs
 * Find actual start of next proc
 nEndProc = FindDefLine(;
 aProcs[m.nProc + 1, 1], ;
 aProcs[m.nProc+1, 2], ;
 aProcs[m.nProc+1, 3], ;
 @aProcLines) - 1

 ELSE
 nEndProc = m.nTotalLines
 ENDIF

 * Search backward to ignore trailing
 * comment lines
 DO WHILE nEndProc > m.nStartProc AND ;
 (EMPTY(aProcLines[m.nEndProc]) OR ;
 LEFT(aProcLines[m.nEndProc],1) = ;
 "*")
 nEndProc = m.nEndProc -1
 ENDDO

 * Now grab the relevant lines
 cProcText = m.cDirectives
 FOR nLine = m.nStartProc TO m.nEndProc
 cProcText = m.cProcText + ;
 aProcLines[m.nLine] + ;
 CHR(13) + CHR(10)
 ENDFOR

 * Save
 STRTOFILE(m.cProcText, m.cFileName, 0)
 ENDIF
 ENDIF
 ENDFOR

ENDIF

RETURN

FindDefLine returns the line number in the file
on which the specified information (whether it’s a
routine, a class definition, or some kind of compiler
directive) actually begins, correcting for the bug in
AProcInfo(). The function receives the name of the
item, the line it’s supposed to start on, the type of
item, and the array containing all the lines in the
procedure file. It builds a logical condition to iden-
tify the correct line (or, more accurately, to iden-
tify lines that cannot be the correct line) and then
loops backwards from the specified line until it

finds a line that qualifies as the right one. The code
is shown in Listing 4.

Listing 4. This function corrects for the bug in AProcInfo() by
searching backward to find the real first line of the routine.
PROCEDURE FindDefLine(cProcName, ;
 nStartsOn, cType, aProcLines)
* Find the actual line on which the specified *
proc starts. It may be nStartsOn, but due to
* a bug in AProcInfo, might be an earlier
* line.

LOCAL cLine, cWord2, nAdjust
LOCAL cDefinitionCondition

DO CASE
CASE m.cType = 'Procedure'
 cDefinitionCondition = ;
 [NOT INLIST(LEFT(m.cLine,4),"PROC","FUNC");
 OR NOT (m.cWord2 == UPPER(m.cProcName))]

CASE m.cType = 'Class'
 cDefinitionCondition = ;
 [NOT ("DEFI"$GETWORDNUM(m.cLine,1) ;
 AND m.cWord2 == "CLASS")];
 + [OR NOT GETWORDNUM(m.cLine,3) == ;
 UPPER(ALLTRIM(STREXTRACT(m.cProcName,'', ;
 'AS')))]

CASE m.cType = 'Directive'
 cDefinitionCondition = ;
 [NOT (LEFT(m.cLine,1) = "#"] + ;
 [OR NOT INLIST(GETWORDNUM(m.cLine,1), ;
 "INCLUDE", "IF", "ELIF", "ELSE", "ENDIF", ;
 "IFDEF", "IFNDEF", "UNDEF"))]

CASE m.cType = 'Define'
 cDefinitionCondition = ;
 [NOT (LEFT(m.cLine,1) = "#" OR ;
 NOT (m.cWord2 == UPPER(m.cProcName))]
ENDCASE

nAdjust = 0
cLine = ;
 UPPER(ALLTRIM(aProcLines[m.nStartsOn]))
cWord2 = GETWORDNUM(m.cLine,2)
IF "(" $ m.cWord2
 cWord2 = STREXTRACT(m.cWord2, '', '(')
ENDIF
DO WHILE &cDefinitionCondition
 nAdjust = m.nAdjust + 1
 cLine = ;
 UPPER(aProcLines[m.nStartsOn - m.nAdjust])
 cWord2 = GETWORDNUM(m.cLine,2)
 IF "(" $ m.cWord2
 cWord2 = STREXTRACT(m.cWord2, '', '(')
 ENDIF
ENDDO

RETURN m.nStartsOn - m.nAdjust

Adding the tool to Thor
Adding this tool to Thor is easy, assuming you
have Thor installed. Make any changes you want
to the tool’s PRG (such as what submenu you want
it on or the prompt you’ll see). Then from the Thor
menu, choose More | Open Folder | My Tools.
Drop the PRG into that folder and restart VFP (or
just restart Thor) and tool will be available.

November 2017	 FoxRockX� Page 19

If you’re not using Thor (why not?), you can
extract the code from the ToolCode routine into a
standalone PRG and use the tool directly. There are
no dependencies on theThor framework.

Improving the tool
In addition to the items I mentioned in “Doing a
split” earlier in this article, you might want to mod-
ify the tool to operate on an open file rather than
having to point to it. (That would a good use of the
Thor framework.)

You might also want to modify the code so
that it only puts the directives you need into a
given PRG. If you’re dealing only with #DEFINE,
that’s pretty easy; just search the code in the rou-
tine to see if the specified constant appears. How-
ever, for include files, you’d have to do more work;
AProcInfo() can give you a hand there, as you can
ask it only for directives, so you could apply it to
the Include file and then search the code for each
routine to see whether any of those definitions
appear.

Let me know if you think of any other useful
extensions.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

